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Introduction: 

The research on transport properties of nanoelectronic devices has become a 

worldwide effort due to the possibility to fabricate structures at the nanometer 

scale. Metal-Oxide-Semiconductor transistors with channel lengths as small as 

10 nm are now being actively studied both theoretically and experimentally. 

Remarkable experiments have been performed to measure the current   through 

single-quantum systems, such as molecules or semiconductor quantum dots. In 

these experiments, the molecules or the quantum dots are connected to metallic 

electrodes under bias   using scanning tunnelling microscopy tips nanometer-

size electrodes or break junctions. 

Here we shall address a nano-device (e.g. the channel of a nano-transistor, 

molecules or quantum dots) connected to two electrodes with electrochemical 

potentials (i.e. non equilibrium Fermi levels)    (left) and    (right). When    

and    are not equal due to an external bias (        ), the nano-device is 

in a non-equilibrium state and there is a net electron flow through the system 

(Fig. 1). The two electrodes are macroscopic conducting leads (electron 

reservoirs) which can be simulated as semi-infinite metals or semiconductors. 

The reservoirs are large enough that the bulk    and    are not perturbed by the 

current  . We assume that the leads can be described by a one-particle 

Hamiltonian, and thus the electrons are viewed as non-interacting except for an 

overall mean-field potential. In contrast, electron- electron interactions usually 

play an important role in the nano-device because electrons are confined in a 

small region. Therefore their treatment represents a major challenge. 

Description of the System: 

Standard ab initio and semi-empirical methods used in the electronic structure 

calculations are not directly applicable to transport problems because (1) they 

usually apply to closed systems either periodic or finite and (2) the electronic 

system must be in equilibrium, whereas electronic conduction through 
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nanostructures involves open systems (infinite and non-periodic) in non-

equilibrium. 

 

Fig. 1 

The usual way to deal with open systems is to partition them into three regions, 

the device and the two contacts (Fig. 1), and to perform the calculations in three 

steps. The first one is to calculate the electronic structure of the contacts. It must 

be done only one time, for example at zero bias, because the contacts are 

defined in such a manner that a change in the applied bias just corresponds to a 

rigid energy shift of their electronic levels. This step requires computational 

methods which were mostly developed to study surfaces of metals or 

semiconductors. The second step is the resolution of the Schrödinger equation 

in the device region using a Hamiltonian which is renormalized to take into 

account the effect of the contacts on the device. This renormalization can be 

achieved by adding self-energy terms in the Hamiltonian. The resolution may be 

done iteratively when the calculation of the potential and of the eigenstates in 

the nano-device is performed self-consistently. The third step is the calculation 

of the current which leads to define a non-equilibrium density operator (or 

matrix) with the constraint that deep in the electrodes the electronic levels are 

filled according to their Fermi levels    and   . 

This approach also works when the nano-device is connected to microscopic 

leads provided that these leads are coupled to macroscopic conductors acting as 

particle reservoirs. In that case it is often necessary to include a part of the leads 

into the device region (Fig. 1). In the general case, the device region includes 

the parts of the leads where the electron density differs importantly from the 



Dr. Avradip Pradhan, 
Assistant Professor, 

Department of Physics, 
Narajole Raj College, Narajole. 

 

 
PAPER: DSE3T (Nano Materials and Applications) 
TOPIC(s): Electron Transport (Part – 1) 

bulk or the free surface situation. In the case of metallic leads, these regions are 

small due to the strong screening of the electric fields. 

Carrier transport in nanostrucutures, Weak Coupling Limit: 

Here we consider the case where the nano-device is only weakly coupled to the 

two electrodes which allows to use perturbation theory. In many situations this 

approximation is well justified and is the basis of important theoretical 

developments to describe the conduction through small metallic or 

semiconducting islands. 

 

Fig. 2 

Perturbation Theory. We treat here the transfer of electrons between two 

electrodes in perturbation theory (Fig. 2). We write the total Hamiltonian of the 

system as       . where    is the Hamiltonian of the free electrodes with 

their corresponding bias and   is their coupling which takes into account the 

presence of the nano-device. We assume that the left and right electrodes are 

characterized by quasi-continuum of states      and     , respectively. The Fermi 

golden rule provides the transfer rate (probability per unit time) of an electron 

between these states  
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Here             and   ,    are the energies of the states      and     .  

The current   is given by the net difference between the electron flow from the 

left to the right and the flow from the right to the left. Summing over all states 

and taking into account the occupation of the levels, we finally obtain 

  
   

 
      

 
                                

where               is the Fermi distribution function.  

In the usual case of spin degeneracy, a factor 2 can be factorized. Introducing 

the density of states in the right and left electrodes as                 

and                , we derive a well-known formula for the current as 

  
   

 
                                       

where      is the coupling of the states at energy   (assuming that they are not 

degenerate). 

 

Fig. 3 

Case of an Island with a Single Level. This is an example where we assume 

that the nano-device (called an island) is having only a single energy level    

which is located in between    and   . We define the transfer rates    and    

through the left and right junctions, respectively (Fig. 3). Following the Fermi 

golden rule, we obtain 
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Here    and    have the dimension of an energy and describe the coupling of 

the level    with the electrodes. The net current through the left and right 

junctions is given by 

                        

                        

where    is the mean occupation of the island state   . In a permanent regime, 

we have         and we finally obtain 

  
 

 
                   

            

             
  

This simple expression shows that the difference between the chemical 

potentials in the two reservoirs creates a continuous flow of electrons through 

the island level for which the occupation    is intermediate between          

and         . 

Beyond Perturbation Theory: 

In the previous part, we assumed that the coupling between the contacts and the 

nano-device could be treated in perturbation. For metallic islands, this is valid 

when         where   is the average Coulomb charging energy. For 

molecules or semiconductor nanostructures, there is a further requirement that 

         where    is the average splitting between quantum-confined 

states. But in many situations the coupling parameters    and    are of the 

same order of magnitude or larger than   and   . Thus there is a need for a 

computational theory valid for any coupling strength. 

In this section, we only consider the case of non-interacting electrons making 

use of the fact that most of the electronic structure calculations resolve single-
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particle equations. In this limit, the non-equilibrium Green's function formalism 

leads to simple expressions for the current. 

Elastic Scattering Formalism. We consider once again the system of Fig. 1 

divided into three regions. We neglect inelastic scattering processes within the 

islands and at the contacts, which turns out to be a good approximation for 

nano-devices in which the transport is often coherent. The elastic scattering 

formalism allows to calculate the current through the structure using the 

eigenstates of the total Hamiltonian        where    is the Hamiltonian 

of the three uncoupled regions and   is their coupling. Among the eigenstates of 

   we consider in the following two groups of states: (1) those       of energy    

incident from the left lead, partially reflected back, and partially transmitted into 

the right lead and (2) the symmetric states       of energy    incident from the 

right lead (Fig. 4). Since the transport is coherent, the states       are in 

equilibrium with the left reservoir, i.e. they are occupied by electrons according 

to the Fermi function         . Symmetrically, the states       are filled up 

according to the Fermi function         . 

 

Fig. 4 

The states       are solutions of the Schrödinger equation                   . 

If    , the solutions correspond to the eigenstates      of    in the left lead 

given as              . Thus the formal solution is written as  

                  
          

Now we define the (retarded) Green's functions which will be particularly 

useful in the following:  
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It can be shown that the Green's functions   and    are connected by the so-

called Dyson's equation as          . 

Let us now write the total current as            separating the contribution 

from each group of states. The current    comes from electrons in states      , 

injected from the left side and scattered by the potential  . We get 

   
    

  
                                 

where    denotes the complex conjugate of the previous term. Introducing a 

new operator (called a scattering operator) defined as              , 

one finally obtains    
      

 
              

                     

Using a similar expression for   , we finally get the total current as 

  
   

 
              

                                 

Let us now consider the common situation when the two leads are only coupled 

through the nanostructure (         ). Here we have 

                           

where   and   denote eigenstates of    in the decoupled nano-device. Let us 

define the coupling matrices as  

   
                        

   
                        

The expressions lead to a compact expression for the current as 

  
 

 
                                 

where the trace (Tr) of the matrix is taken over all the basis states within the 

decoupled nano-device subspace. This expression can finally be rewritten as 
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which is known as the generalization of the famous Landauer formula that 

relates the current to the transmission coefficient                  across 

the nano-device region (a factor 2 is usually factorized in front of 
 

 
 to account 

for the spin degeneracy). 

Transport in Ballistic Conductor: 

Electrical resistance characterizes the energy dissipation imposed upon the 

carriers when they pass through a device under the action of an electric field. It 

reflects the power lost in the device. Usually, when we want to study the 

transport properties of a macroscopic conductor, or a device which is not 

mesoscopic, we expect the resistive contribution of the device active layer to 

represent a non-negligible part of the overall measured resistance, and most 

often to be the prevailing part. Even if the contacts between the metal pads and 

the sample exhibit a substantial resistance value, we can get rid of it by using 

four-probe measurements, in which we pass the current through some terminals 

and we measure the voltage from the others. Then we obtain something which is 

not zero, which depends on the resistivity value of our sample and which scales 

with the device length according to Ohm’s law. Now suppose that we want to 

measure the transport properties of a really small device, in which the electrons 

are truly ballistic. If nothing impedes the electron passing through the device we 

might expect the device resistance to go down to zero, and not to depend on the 

device length any longer. However, this is not the case. In fact, if we 

continuously reduce the resistance of something, we can expect that sooner or 

later the active layer resistance must become smaller than the contact resistance, 

which we need to link the small device to the macroscopic wires. Thus, we can 

expect that after a substantial enough reduction of device length, all the losses 

are due to the contact rather than to the “device” itself. We shall investigate this 

point in the case of quantum, ballistic devices. 

The central assumption is that once an electron has entered into the ballistic 

conductor, it cannot be reflected back. As a matter of fact, this is not a 

completely new assumption, but a consequence which arises from the assumed 
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ballistic character of the device: electrons do not experience any collision which 

can backscatter them; if we put one electron into the device going left, it cannot 

do anything but go to the left side since its momentum cannot change. 

Quantized Conductance. It has been proposed that the conductance in a 

ballistic nano-device will be quantized in 
   

 
, given as   

   

 
 , where   is 

the number of modes or channels in the nanostructure.   

 

Fig. 5 

This quantized conductance has already been experimentally observed. In 2D 

devices such as Si MOSFETs or heterostructures, if we fabricate a local 

constriction such as schematized in the right part of Fig. 5, we obtain something 

which is 1D. In addition, if we can operate the gates above or by the sides of the 

constriction, we can change its effective width by depleting its sides. As we 

deplete the edges the free space becomes more constrained and the 1D subband 

bottom energies    correspondingly increase, so that we can really control the 

number of open channels below the Fermi energy. Thus, whenever we change 

the gate voltage so as to make one energy    go below the Fermi level, we add 
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one channel and expect a quantized conductance increase by a factor 
   

 
 as 

shown in the left part of Fig. 5. 

Explanation from Landauer Formula. Incorporating the spin degeneracy 

Landauer formula gives us   
  

 
                        . 

Assuming the transmission coefficient      independent of energy  , this 

expression can be simplified to    
  

 
             where      is the 

number of modes in the nano-device. Since we can relate the external bias as 

        , therefore we get   
   

 
       or the conductance is given as 

  
 

 
 

 

 
 

   

 
  . For a true ballistic conductor,     and we finally obtain 

the formula for quantized conductance as    
   

 
 . 

Coulomb Blockade Effect: 

The application of a mean-field theory to the transport through nanostructures is 

better justified when the coupling is strong (       ). However, as already 

mentioned, many experiments actually belong to an intermediate regime where 

the coupling coefficients and the charging energy have similar magnitudes.  

Therefore our aim in this part is to point out the main deficiencies of 

computational methods of the electronic structure to describe the Coulomb 

blockade effect which is the more obvious consequence of electron-electron 

interactions in nanostructures. We shall consider the limit         in order 

to compare with the predictions of the orthodox theory. It will give us the 

opportunity to judge the mean-field approaches in the worst situation. Here the 

current   is the resultant of several tunnelling processes under applied bias  . 

For example, an electron can tunnel from the left electrode to the island, which 

goes from a configuration of energy         to a configuration of energy 

         . We define the transition levels as 
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Here we consider the simplest model of a nano-device characterized by a single 

level two-fold degenerate due to the spin. We assume that this level is empty in 

the neutral state and that the total energy of the system can be written as 

         
 

 
     

where   is the number of electron in the island (   , , ) and   is the Coulomb 

charging energy which takes into account the dielectric environment of the 

nanostructure. We suppose for simplicity that the triplet and singlet states for 

      have the same energy. We also neglect the dependence of the energy 

levels with the applied bias. Following the transition levels we define two 

ionization energies as            
 

 
  and             

 

 
  and and 

the current is determined by the position of the chemical potentials with respect 

to these levels. 

 

Fig. 6 

Orthodox Model. We consider the situation of Fig. 6 where a bias voltage 

shifts the chemical potential    of the left electrode. When              , 

the current flows through the nanostructure which is in the charge state   or    

with the respective probabilities    and    respectively. These probabilities can 

be calculated as    
  

      
 and    

   

      
, where for simplicity we assume 

that the coupling coefficients    and    are independent of the energy. In these 

conditions, the current is given by    
 

 

     

      
. 
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When                       , the there will be three possible charge 

states  ,    and    with the respective probabilities     
  

     
  ,    

     

        
 and     

  

     
   and the current becomes    

 

 

     

     
. 

The current vs voltage characteristics in the limit     K is shown in Fig. 7 for 

two sets of values for    and   . It is a staircase function due to the use of a 

perturbation theory. The true characteristic should be with a broadening of the 

steps of the order of    and    (neglecting Kondo effect). 

 

Fig. 7 
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This concludes part 1 of this e-report. 

The discussion will be continuing in the part 2 of this e-report.  
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