COMPILED \& CIRCULATED BY
 Dr. Tapanendu Kamilya
 Assistant Professor, Department of Physics, Narajole Raj College

Abstract

Topic: Complex Analysis: Cauchy-Riemann Equation, Analytic Function,Cauchy-Riemann Equation in Polar Form, Poles \& Zeroes, Taylor Series, Singular Point and its types

COMPLEX ANALYSIS

Contour:

A contour is a Jordan curve consisting of continuous chain of a finite number of regular arcs. This contour is said to be closed if the starting point A of the arc coincides with the end of the point B of the last arc.

Cauchy-Riemann Equation

Let us consider two functions $u(x, y)$ and $v(x, y)$ of real variables (x, y) such that,
$f(z)=u(x, y)+i v(x, y)$ is a function of complex variable $z=x+i y$.
Here,
(i) $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$
(ii) $-\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}$

These equations are known as Cauchy-Riemann Equation.

Analytic Function:

A single valued function $f(z)$, differentiable atz $=z_{0}$, is said to be analytic at $z=z_{0}$ in the domain D . The point at which the function $f(z)$ is not differentiable is called a singular point of the function.

The necessary conditions for function $f(z)=u+i v$ to be analytic at all points in the domain D , are-
(i) $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ (ii) $-\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}$

Cauchy-Riemann Equation in Polar Form

$$
\begin{array}{ll}
\text { (i) } \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} & \text { (ii) } \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
\end{array}
$$

Zeros of Analytic function:

COMPILED \& CIRCULATED BY
 Dr. Tapanendu Kamilya
 Assistant Professor, Department of Physics, Narajole Raj College

The value of z for which the analytic function $f(z)$ becomes zero is said to be zero of $f(z)$.

As for example: Zeroes of $z^{2}-3 z+2$ are $z=1$ and 2
Zeroes of $\operatorname{Cos} z$ are $\pm(2 \mathrm{n}-1) \frac{\pi}{2}$, where $n=1,2,3, \ldots \ldots \ldots$

Cauchy's Integral Formula

If $f(z)$ is analytic within and on the closed curve C and a is a point within C, then
$f(a)=\frac{1}{2 \pi i} \int \frac{f(z)}{z-a} d z$
$f^{\prime}(a)=\frac{1}{2 \pi i} \int \frac{f(z)}{(z-a)^{2}} d z$
$f^{\prime \prime}(a)=\frac{2!}{2 \pi i} \int \frac{f(z)}{(z-a)^{3}} d z$
$f^{n}(a)=\frac{n!}{2 \pi i} \int \frac{f(z)}{(z-a)^{n+1}} d z$

Cauchy's Residue Theorem

If a function $f(z)$ is analytic within and on the closed curve C, except at a finite number of poles within C, then

The integral $\int_{C} f(z) d z=2 \pi i \sum R$
Where, $\sum R$ is the sum of the residues at poles within C , the integration being taken in positive.

Taylor Series
$f(z)=f(a)+(z-a) f^{\prime}(a)+(z-a)^{2} \frac{f^{n \prime}(a)}{2!}+\ldots \ldots \ldots+(z-a)^{n} \frac{f^{n}(a)}{n!}+\ldots \ldots$

Problem-1:

Show that $e^{x}(\operatorname{Cosy}+i \operatorname{Siny})$ is a analytic function.
Let, $e^{x}(\operatorname{Cos} y+i \operatorname{Sin} y)=u+i v$
Therefore, $u=e^{x}(\operatorname{Cosy})$ and $v=e^{x}(\operatorname{Sin} y)$
$\frac{\partial u}{\partial x}=e^{x}(\operatorname{Cos} y) ; \frac{\partial v}{\partial x}=e^{x}(\operatorname{Sin} y)$

COMPILED \& CIRCULATED BY
 Dr. Tapanendu Kamilya

Assistant Professor, Department of Physics, Narajole Raj College
(ii) $\frac{\partial u}{\partial y}=-e^{x}(\operatorname{Sin} y) ; \frac{\partial v}{\partial y}=e^{x}(\operatorname{Cos} y)$

Therefore,
$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad$ (ii) $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
Thus, Cauchy-Riemann equation is satisfied and hence, $e^{x}(\operatorname{Cosy}+i \operatorname{Sin} y)$ is a analytic function.

Problem-2:

Evaluate the integral:
$\int_{C} \frac{e^{x}\left(z^{2}+1\right)}{(z-1)^{2}} d z$, where C is the circle $|z|=2$
Answer: As C is given by $|z|=2$, the point $z=1$ lies within C, then according to the theorem
$f^{\prime}(a)=\frac{1}{2 \pi i} \int \frac{f(z)}{(z-a)^{2}} d z$
$\int_{C} \frac{e^{z}\left(z^{z}+1\right)}{(z-1)^{x}} d z=\int_{C} \frac{f(z)}{(z-1)^{2}} d z=2 \pi i f^{\prime}(1)$
Now, $f(z)=e^{z}\left(z^{2}+1\right)$
Therefore, $f^{\prime}(z)=e^{z}\left(z^{2}+2 z+1\right)=4 \mathrm{e}$
Therefore, $\int_{C} \frac{f(z)}{(z-1)^{2}} d z=2 \pi i 4 \mathrm{e}=8 \pi e i$
Problem-3:
Evaluate the integral:
$\int_{C} \frac{e^{-z}}{z+1} d z$, where C is the circle $|z|=\frac{1}{2}$
Poles of the integrand are given by putting the denominator equal to zero.
So, $z+1=0$
Therefore, $z=-1$

COMPILED \& CIRCULATED BY
 Dr. Tapanendu Kamilya

Assistant Professor, Department of Physics, Narajole Raj College

The given circle $|z|=\frac{1}{2}$ with the centre at $z=0$ and $\operatorname{radius} \frac{1}{2}$
The point $z=-1$ lies outside the circle $|z|=\frac{1}{2}$
Therefore, the function $\frac{e^{-z}}{z+1}$ is analytic within and on C
By Cauchy's integral theorem $\int_{C} \frac{e^{-z}}{z+1} d z=0$

Problem-4:

Use Cauchy's Integral formula to evaluate:
$\int_{C} \frac{2 z+1}{z^{2}+z} d z$, where C is the circle $|z|=\frac{1}{2}$
Hence, $z^{2}+z=0$
Therefore, $z(z+1)=0$
So, $z=0,-1$
So, $|z|=\frac{1}{2}$ is a circle with centre at origin and radius $=\frac{1}{2}$
Therefore, it encloses only one pole at $\mathrm{z}=0$
Therefore, $\int_{\mathrm{C}} \frac{2 z+1}{z^{z}+z} \mathrm{dz}=\int_{\mathrm{C}} \frac{\frac{2 z+1}{z+1}}{z} \mathrm{dz}=2 \pi i\left[\frac{2 z+1}{z+1}\right]_{z=0}=2 \pi i$

Singular Point:

A point at which a function $f(z)$ is not analytic is known as a singular point or singularity of the function.

For example, the function $\frac{1}{z-2}$ has singular point at $z-2=0$ or $z=2$
Isolated Singular Point: If $z=a$ is a singularity of $f(z)$ and if there is no other singularity within a small circle surrounding the point $z=a_{,}$then $z=a$ is said to be an isolated singularity of the function $f(z)$; otherwise it is called non-isolated.

The function $\frac{1}{(z-1)(z-3)}$ has two isolated singular points, namely $z=1$ and $z=3$
Because, $(z-1)(z-3)=0$

COMPILED \& CIRCULATED BY
 Dr. Tapanendu Kamilya

Assistant Professor, Department of Physics, Narajole Raj College
Therefore, $z=1$ and $z=3$
Non-isolated Singular Point:If $z=a$ is a singularity of $f(z)$ and if there is no other singularity within a small circle surrounding the point $z=a$, then $z=a$ is said to be an isolated singularity of the function $f(z)$; otherwise it is called non-isolated.

For example, $\frac{1}{\operatorname{Sin} \frac{\pi}{2}}$ is not analytic at the points where, $\operatorname{Sin} \frac{\pi}{2}=0$ at the points $\frac{\pi}{2}=n \pi$ Therefore, $\mathrm{z}=\frac{1}{n^{\prime}}$, where, $\mathrm{n}=1,2,3 \ldots \ldots$.

Thus, $\mathrm{z}=1, \frac{1}{2}, \frac{1}{3}, \ldots \ldots \ldots \ldots$.
Pole of order m: Let a function $f(z)$ have an isolated singular point $z=a, f(z)$ can be expanded in a Laurent's series around $z=a$, giving
$f(z)=a_{0}+a_{1}(z-a)+a_{2}(z-a)^{2}+\ldots \ldots .+\frac{b_{1}}{(z-a)}+\frac{b_{1}}{(z-a)^{2}}+\cdots \ldots \ldots .+\frac{b_{m}}{(z-a)^{m}}$
Here, $z=a$ is said to be a pole of order m of function $f(z)$, when $m=1$, the pole is said to be simple pole. In this case,
$f(z)=a_{0}+a_{1}(z-a)+a_{2}(z-a)^{2}+\ldots \ldots \ldots+\frac{b_{1}}{(z-a)}$
If the number of the terms of negative powers in expansion is infinite, then $z=a$ is called an essential singular point of $f(z)$.

Problem-5:

Find the pole of $f(z)=\operatorname{Sin}\left(\frac{1}{z-a}\right)$
$\operatorname{Sin}\left(\frac{1}{z-a}\right)=\frac{1}{z-a}-\frac{1}{3!(z-a)^{\frac{3}{2}}}+\frac{1}{5!(z-a)^{5}}-\ldots \ldots \ldots$
The given function $f(z)$ has infinite number of terms in the negative powers of $z-a$
So, $f(z)$ has essential singularity at $z=a$.

Problem-5:

Find the pole of $f(z)=\frac{\operatorname{Sin}(z-a)}{(z-a)^{4}}$
$\frac{\sin (z-a)}{(z-a)^{4}}=\frac{1}{(z-a)^{4}}\left[(z-a)-\frac{(z-a)^{\frac{\pi}{x}}}{3!}+\frac{(z-a)^{5}}{5!}-\frac{(z-a)^{7}}{7!}+\ldots \ldots\right]$

COMPILED \& CIRCULATED BY

Dr. Tapanendu Kamilya
Assistant Professor, Department of Physics, Narajole Raj College

$$
=\frac{1}{(z-a)^{5}}\left[1-\frac{(z-a)^{z}}{3!}+\frac{(z-a)^{4}}{5!}-\frac{(z-a)^{6}}{7!}+\ldots \ldots .\right]
$$

Therefore, given function has a negative power 3 of $(z-a)$
So, $f(z)$ has a pole at $z=a$ of order 3 .

Problem-6:

Discuss the singularityof $\frac{1}{1-e^{z}}$ at $\mathrm{z}=2 \pi i$
We have $f(z)=\frac{1}{1-\varepsilon^{z}}$
The poles are determined by putting the denominator equal to zero.
i.e. $1-e^{z}=0$

Therefore, $e^{z}=1=(\operatorname{Cos} 2 n \pi+i \operatorname{Sin} 2 n \pi)=e^{2 n \pi i}$
Therefore, $z=2 n \pi i$ (where, $n=0, \pm 1, \pm 2, \ldots \ldots$.)
Clearly, $z=2 \pi i$ is a simple pole.

Frequently Asked Questions/Numerical:

For more problems in this section of Complex Analysis, students can solve the problems of Mathematical Physics: Author-H.K. Dass \& Rama Verma, Published by S. Chand (2018 Ed.) and Principles of Mathematical Physics, Author- S. P. Kuila, Published by NCBA (2018 Ed.).

References:

(i) Principles of Mathematical Physics, Author- S. P. Kuila, Published by NCBA (2018 Ed.).
(ii) Mathematical Physics: Author-H.K. Dass \& Rama Verma,Published by S. Chand(2018 Ed.).

Link to Audio visual Lectures (e-Lectures) given by Distinguish Professors of Foreign Universities:
(i) Part I: Complex Variables, Lecture 1: The Complex Numbers Instructor: Herbert Gross View the complete course: http:/ /ocw.mit.edu/RES18-008F11
(ii) Cauchy Integral Formula: https://www.youtube.com/watch?v=WJOf4PfoHow
(iii) https://www.youtube.com/watch?v=K5DeHvUKzK4

COMPILED \& CIRCULATED BY

Dr. Tapanendu Kamilya
Assistant Professor, Department of Physics, Narajole Raj College

